H(x)=20-16x^2+32x

Simple and best practice solution for H(x)=20-16x^2+32x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=20-16x^2+32x equation:



(H)=20-16H^2+32H
We move all terms to the left:
(H)-(20-16H^2+32H)=0
We get rid of parentheses
16H^2-32H+H-20=0
We add all the numbers together, and all the variables
16H^2-31H-20=0
a = 16; b = -31; c = -20;
Δ = b2-4ac
Δ = -312-4·16·(-20)
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-3\sqrt{249}}{2*16}=\frac{31-3\sqrt{249}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+3\sqrt{249}}{2*16}=\frac{31+3\sqrt{249}}{32} $

See similar equations:

| 44+5y-8=16y-12-13y | | -3/2u=3- | | 2+r/3=7 | | 12h+-9h=84+9h+-9h | | 1/16x=-9 | | 61+24+133-z=180 | | 4(3n+3)=8(9n+2)+9 | | 34x-34=180 | | -3c+8=-c−10 | | .2c+4800=c | | P(x)=-2(x-3)(x-11) | | 7-3x-5-8x=5 | | 3c+8=-c-10 | | 34x+34=180 | | 32^(3x)=4^(2x) | | Q^D=50-6p | | 96=12(2x+2) | | 3x+15=5x+24 | | 8x+12=5x+13+2x+17 | | 24x^2-74x-35=0 | | 4000=4(10^x+2) | | -5p+7=9p-7 | | 7c×0=7c | | 1/8x+1/x=1/3 | | 2/85=m/70 | | y/V6-7=4 | | 63x+11=107 | | 8+6k=5k | | 4x+19+3x+11+3x+12=62 | | 6x+15+9x+16+19x+3=180 | | 14x+1=88+5x-7 | | 2x+4x=3+1 |

Equations solver categories